Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures.
نویسندگان
چکیده
We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25 Å. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis, which help understanding of the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose superexchange stabilized Co-graphene heterostructures with a robust constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point toward possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20-times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.
منابع مشابه
Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy
We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectrosco...
متن کاملMagnetic properties and short-range structure analysis of granular cobalt silicon nitride multilayers
Related Articles Effects of spacer thickness on perpendicular anisotropy L10-FePt/TiN/L10-FePt pseudo spin valves J. Appl. Phys. 111, 083909 (2012) Co/Au multilayers with graded magnetic anisotropy for magnetic field sensing Appl. Phys. Lett. 100, 162402 (2012) Design and micromagnetic simulation of the L10-FePt/Fe multilayer graded film J. Appl. Phys. 111, 073910 (2012) Precession frequency an...
متن کاملEnhanced Blocking Temperature and Isothermal Control of Hysteresis Loop Shifts in Co/NiO/[Co/Pt] Heterostructures with Orthogonal Easy Axes
Heterostructures of Co 4 nm/NiO 1.1 nm/͓Co 0.4 nm/Pt 0.6 nm͔ with mutually orthogonal easy axes allow for isothermal tuning of the hysteresis loop shifts along the applied field axis at room temperature, as well as displaying a greatly enhanced blocking temperature. The loop shifts can be varied up to 35 Oe through the application of moderate dc magnetic fields of 3 kOe. The presence of the ͓Co/Pt͔...
متن کاملSYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE
In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...
متن کاملGate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures
Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2016